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LETTER TO THE EDITOR 

Needle crystal formation in two dimensions 
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Abstracts. A simple model (based on conformal mapping) is constructed to simulate 
two-dimensional growth of needle crystals growing out regularly from a common point. 
The resulting patterns are very similar to those which were obtained by other methods. 
The radius of gyration exponent /3 is measured and found to be in the range 0.58-0.65, 
independent of the number of needles (n). It is shown that for large patterns, p asymptoti- 
cally approaches a value of 3. To compare our patterns with the DLA aggregates, the 
average slope (a) was measured for the density-density correlation function plotted 
logarithmically (log r-log C ( r ) ) .  The relation between (I and /3, which is characteristic 
of DLA fractal aggregates, is satisfied only in the case n = 8. 

In recent years, pattern formation in such diff usion-controlled processes as solidification 
or viscous fingering, has attracted great interest. Growth has been investigated by 
various methods, e.g. the boundary layer model (Ben-Jacob et a1 1984, Karma and 
Kotliar 1985), the numerical solution of the Laplace equation (Chen and Wilkinson 
1985), through the use of conformal mapping (De Gregoria and Schwartz 1985) and 
the Monte Carlo (MC) method. 

The fundamental MC method, the diffusion-limited aggregation ( DLA) model, was 
introduced by Witten and Sander (1981). The result of this model is a fractal object 
(see Mandlebrot 1982) in which the fluctuations, originated in the MC method, have 
an important role. To damp the fluctuations by averaging, another MC method was 
introduced by Tang (1985), SzCp et a1 (1985) and KertCsz et a1 (1986). KertCsz and 
Vicsek (1986) then included the averaging in the DLA model, and at large averaging 
they obtained regular needle crystals. 

Let us take the following equations which describe the growth of a pattern: 

Ulr=O (IC) 

where r represents any point on the boundary, and n its normal direction. 
U can correspond to several physical quantities like the temperature or concentration 

in the solidification (see Langer 1980), the pressure in the Hele-Shaw experiment 
(Kadanoff 1985) or the probability of finding the moving particle in DLA (Witten and 
Sander 1981). D corresponds to the diffusion constant. Equation ( I C )  represents the 
vanishing surface tension case. 
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We also have another boundary condition: fixing the origin at the seed of the pattern 

where C is a constant. 
Our aim is to construct a relatively simple model to determine the shape of needle 

crystals (NC). Langer (1986) has shown that the direction of the NC does not change 
during growth in the presence of a slight anisotropy in the surface tension. Here we 
present a simple approximative scheme where we neglect the surface tension; anisotropy 
is involved only in the starting configuration, and it is assumed that the direction of 
the needle does not change. Our approach is based on the solution of the Laplace 
equation for idealised needles. 

The growth velocity of the tip is much greater than the growth velocity of the side 
surface. During growth, the width/length ratio for the needles is decreasing. The 
slight width of the needles has only a small effect on the growth. The main assumption 
in our model is to disregard this effect. 

In the calculation of grad U, the width of the needle is neglected. This allows easy 
evaluation of the gradient at the side of the needle. However, at the tip of the needle, 
the gradient has divergence. For this reason the gradient is determined by finite 
differences. Let our local coordinate system be chosen in such a way that the origin 
is at the location of the seed, the coordinate x is in the direction of the needle and y 
is perpendicular to it. At the tip of this needle equation ( l b )  becomes 

ds  U ( s + A , , O )  _-  - D  
dt A, 

where s is the length of the needle. 
In addition, equation ( l b )  for the side surface of the NC becomes 

where W denotes the half width of the needle of length s at a distance x from the 
origin, and A I ,  A2 are fixed small values. The above two equations are the basic 
assumption of our model. 

It can be seen that the tip of an NC growing in our model, according to equations 
(2) and (3), corresponds to the tip of a real parabolic needle crystal (which is the 
two-dimensional case of the Ivantsovmodel) with tip radius A , / 2  (i.e. W = ( A 1 ( s  -x) ) ' / *  
if S - - X < <  s). 

Furthermore, DLA is a discrete model, where A I  = A2 = 1 lattice unit. 
In the following, we examine the growth of NC placed in a regular shape. It is 

easy to solve the Laplace equation in the case of a pattern consisting of rods of zero 
width placed regularly as an n-fold. The conformal map 

f ( Z ) = s - 1 [ Z n / 2 + ( Z n - S " ) 1 / * ] 2 / "  (4) 

maps the pattern described above into the circle of unit radius. Taking ( I C )  and ( I d )  
into account, the solution of ( l a )  is 

( 5 )  U(x,  Y )  = C loglf(x +ir)l. 
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Equations (2) and (3), using (9, are easily solved numerically by computer. Results 
in the present letter were obtained by choosing A, = A2 = C = D = 1. Thus, we assume 
that the tip radius does not change during the growth. The patterns were grown from 
the s = 1, W = 0 initial state. Figure 1 shows NC calculated by this method for n = 6 
and s = 740. 

Figure 2 shows the width profile W(x,  740). As n increases the parts near the origin 
are more screened. Therefore, the distance m between the origin and the point of 

Figure 1. Regular needle crystals grown by our method. The radius of the pattern is 740 
units, while the tip radius is 0.5 units. 
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Figure 2. Half-width profiles of needle crystals; n denotes the number of needles growing 
from theorigin; (a )  n = 3 ,  ( b )  n=4, ( c )  n = 6 ,  ( d )  n = 8 .  
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maximal width increases: mn=, = 0.22 s, mnZ4 = 0.33 s, mn=6 = 0.48 s, mnS8 = 0.56 s. In 
the case of n =4, the point of maximal width is a distance s/3 from the origin. For 
n = 6 the width profile is quasi-symmetrical. These shapes are similar to the averaged 
DLA patterns grown by Kertksz and Vicsek (1986) ( n  = 4, n = 6), to the experimental 
results of Ben-Jacob er aZ(1985) ( n  = 6) and to the experimental and theoretical results 
of Chen and Wilkinson (1985) ( n  = 4). The stability of the tip was due to the anisotropy 
of a grid in these cases. 

Figure 3 shows in a log-log plot the radius of gyration (root-mean-square distance 
from origin), calculated during the growth, as a function of the area of the pattern. 
The slopes of the curves are almost independent of n, and their values are 
ps=20=0.581 *3% ps=50=0.628* 1.5% pp=200 = 0.650 * 1 O h .  

In the following we shall see that exponent p asymptotically approaches the value 
of 3 .  It is easy to see that, in any direction from the tip, the value of U is proportional 
to the square root of the distance from the tip (provided the distance is small). Likewise, 
near the line U = 0, U is proportional to the distance from the line. Therefore, on the 
basis of (2)-(5) 

ds/dt  = go /& (6) 

a w ( x ,  s ) / a t  = s - ' g ( x / s )  (7)  

and 

hold asymptotically when s is large enough. Furthermore, go is a constant and the 
function g ( x ) ( O  < x < 1) is proportional to the gradient of U at the side surface of an 
NC of unit length. Using these equations we obtain 

from which 

"(AX, As) = A " *  W ( x ,  s) 

Log A 

Figure 3. Log-log plot of the radius of gyration function. The slope is in the range 0.58-0.65; 
curves are n = 3  (- - - -), n = 4  (-), n = 6  (.--.--. ) and n = 8  (. . . . . . .). 
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follows; i.e. W is a homogeneous function of one half order. This shows that we have 
affine self-similarity: during their growth the NC do not change shape; they only 
decrease in width/length ratio. This was actually seen in a graphical display of a 
computer-simulated NC growth. Denoting the area of an NC of length s by A ( s ) ,  the 
radius of gyration by R, ( s )  and using equation (8) ,  it follows that 

Rg( s)  = ( Rg( so)/ A 2 / 3 ( s 0 ) ) A 2 / 3 ( s )  
where so is a constant. We arrive at the result that asymptotically p =$. This is in 
agreement with the theoretical result of Turkevich and Scher (1985) derived for the 
two-dimensional DLA model with sharp tips, and the numerical results of Nittman and 
Stanley (1986). 

Figure 4 shows logarithmically the density-density correlation function. C (  r )  is 
the average value of A-’ 51 p ( r ’ ) p ( r +  r ’ )  dr’, when I r l=  r. The density p( r )  is defined 
to be 1 inside the NC and 0 outside. For us, only the 2 W < r << 740 (i.e. 3 <log r < 6) 
part of the curve is of importance. As n increases the average slope increases and the 
dependence o f t  is stronger. The average slopes, obtained by the least-squares method, 
for the 3 < log r < 6 part of the curves are 

 CY,=^ = -0.98 CY, =4  = -0.83  CY,,=^= -0.66  CY,,,^ = -0.51. 

For the fractal patterns grown by the DLA model, the equation D = 1/p = d + CY is 
satisfied ( D  is the fractal dimensionality, d the Euclidean dimensionality and, in this 
case, d = 2). For the NC patterns growing by our model, the value of CY depends 
strongly on n while the value of p does not. The equation 1/p = 2 + a, characteristic 
of fractals, comes true in our model for n = 8 only. The number of main branches of 
patterns growing by the standard DLA model cannot be counted because of its random 
characteristic. However, the number of main branches can be defined as follows: 

3 4 5 6 
log r 

Figure 4. Log-log plot of the density-density correlation function of needle crystals (as 
in figure 1 )  for various numbers of needles; curves are n = 3 (- - - -1, n = 4 (-1, 
n = 6 ( . - - . - . )  and n = 8  ( a . .  . .). 
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n = l l /Omin, where Omin is the angle for which the tangential correlation function C(O), 
introduced by Meakin and Vicsek (1985), has minimum value. In the DLA model, 
Omin = 0.35 f 0.04, hence n = 9 f 1 for off -lattice aggregates. This is based on a measure- 
ment of C(0) by Meakin and Vicsek (1985). It is interesting that this value is essentially 
the same we obtain in our model when 1//3 = 2 + a. 

Figure 5 shows logarithmically the average density as function of the distance from 
the origin: p(  r )  = n W (  r, 740)lrII. 

0 ,  I I I I 1 I 

3 4 6 
tog r 

Figure 5. Log-log plot of the average density as a function of the distance from the origin. 
Curves are n = 3 (- - - -), n = 4  (-), n = 6  (.--.--.) and n = 8 (. . . .). 

We introduced a relatively simple model to describe the growth of NC growing 
regularly from a common point. Such patterns are produced by the averaged DLA 
model (KertCsz and Vicsek 1986) by solving the Laplace equation by Gauss-Seidel 
iteration (Chen and Wilkinson 1985), and by experiment (Chen and Wilkinson 1985, 
Ben-Jacob et a1 1985). The patterns grown by our model are in good agreement with 
the previous ones. 

These patterns are not fractals. Our equations describing the growth are the same 
as those for the case when, as the result of fluctuations, the growing patterns are fractals 
(see Kertisz and Vicsek 1986). Our model can also be taken to be the large averaging 
limit of the DLA model on a grid. 

The authors thank G Tichy, J KertCsz and T Vicsek for useful comments on the 
manuscript. 
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